
24 The Delphi Magazine Issue 52

TRichEdits And
Embedded Objects
by Brian Long

The TRichEdit component is a
representation of the Win32

rich text control, version 1.0. Dave
Jewell wrote a pair of articles in
Issues 34 and 35 which discussed
how to surface functionality from
the version 2.0 rich text control
into a Delphi component. This arti-
cle discusses how to make use of
functionality that exists in the ver-
sion 1 control, but which the VCL
does not make directly available to
you. To start us off, here is a ques-
tion that arrived at The Delphi
Clinic a few weeks ago:

‘When I create a document with
WordPad and save it as an RTF file, I
can open it into a TRichEdit and
view the contents. If I tell WordPad to
insert a bitmap into the document
(using Insert | Object..., or even
copy and paste) I can see that the file
contains the picture object by load-
ing it back into WordPad, or by using
a DOS text viewer. However, if the
file is opened back into a TRichEdit,
it happily displays the text, but not
the picture. How do I display the pic-
ture? Or on a more generic scope,
how do I alter the TRichEdit compo-
nent so that other objects can be
interpreted?’

Win32 RichEdit controls, as
encapsulated by TRichEdit compo-
nents, by default do not support
OLE objects. When you choose
Insert | Object... in WordPad,

you are asking it to embed an OLE
object into the document. In order
to entice your TRichEdit into sup-
porting them, you must implement
an IRichEditOleCallback interface
in some arbitrary object, and tell
the TRichEdit about it with an
em_SetOleCallback message. This
message is not in the Win32 API
help file that comes with Delphi
(even Delphi 5), but it is described
in the MSDN Library. Once this has
been done, you will be able to paste
and insert objects into your
TRichEdit, and also edit them by
double clicking.

The IRichEditOleCallback inter-
face is shown in Listing 1. In my
representation of the interface,
some of the methods are marked
as safecall and some as stdcall.
The ones not marked as safecall
need very specific HResult codes
returned under some circum-
stances, controlled by code. If the
implications of safecall are
unclear, see my explanatory article
on the safecall reserved word in
last month’s issue.

Whilst the job of implementing
this interface may look a little
daunting, many of the methods can
be stubbed out, and some of them
can have their implementation
effectively copied from appropri-
ate bits of the VCL. Listing 2 has the
code that does the job, which will
be explained in the remainder of
this article.

The class that implements this
interface in this case is called
TRichEditOleCallback. This class
inherits from TInterfacedObject to
avoid me having to worry about
the three methods from IUnknown
that also need to be implemented.
The class has a constructor that
simply records which TRichEdit it
is associated with, and a destruc-
tor that does some tidying up.

To start with, we can dispense
with ContextSensitiveHelp and
GetClipboardData, as this class
does not implement these fea-
tures. So they both return an
HResult code of E_NOTIMPL. Also,
GetContextMenu does nothing more
than set its Menuparameter to 0 and
GetDragDropEffect does nothing at
all (the passed in dragging opera-
tion is probably just fine, so we
leave it). Likewise QueryAcceptData
and QueryInsertObject do nothing,
indicating that we are happy to
have any OLE object pasted or
inserted.

This does not leave too many
methods now. DeleteObject is
called when the OLE object is to be
deleted from the rich edit control.
We deal with this by calling the
IOleObject parameter’s Close
method with a parameter of
OLECLOSE_NOSAVE.

The job of GetNewStorage is to
allocate storage for the OLE
object, in the shape of an IStorage
interface. In this case, the rich edit
is acting as a container for an OLE
object. There is already a
TOleContainer class in the VCL that
does a very similar job, so when we
wonder what to do, it’s a good idea
to look at the source for it. In fact it
has a method called CreateStorage
that does just what we need, so I
pinched its calls to the weirdly
named CreateILockBytesOnHGlobal
and StgCreateDocfileOnILockBytes
APIs.

Now we have GetInPlaceContext
and ShowContainerUI to deal with.
The former of these two has a
requirement to provide an
IOleInPlaceFrame interface refer-
ence that represents the
underlying form housing the rich
edit. It also needs to fill in a
TOleInPlaceFrameInfo record with
information about the window,

IRichEditOleCallback = interface(IUnknown)
['{00020D03-0000-0000-C000-000000000046}']
function GetNewStorage: IStorage; safecall;
procedure GetInPlaceContext(out Frame: IOleInPlaceFrame;
out Doc: IOleInPlaceUIWindow; var FrameInfo: TOleInPlaceFrameInfo); safecall;

procedure ShowContainerUI(fShow: Bool); safecall;
procedure QueryInsertObject(const ClsID: TCLSID;
Stg: IStorage; CP: Longint); safecall;

procedure DeleteObject(OleObj: IOleObject); safecall;
procedure QueryAcceptData(dataobj: IDataObject; var cfFormat: TClipFormat;
reCO: DWord; fReally: Bool; hMetaPict: HGlobal); safecall;

function ContextSensitiveHelp(fEnterMode: Bool): HResult; stdcall;
function GetClipboardData(const ChRg: TCharRange; reCO: DWord;
out DataObj: IDataObject): HResult; stdcall;

procedure GetDragDropEffect(fDrag: Bool; grfKeyState: DWord;
var dwEffect: DWord); safecall;

procedure GetContextMenu(SelType: Word; OleObj: IOleObject;
const ChRg: TCharRange; var Menu: HMenu); safecall;

end;

➤ Listing 1



December 1999 The Delphi Magazine 25

including the window handle,
whether it is an MDI app, and so on.
This information is used when the
object is being prepared for
in-place editing, so the underlying
application that ‘owns’ the object
can insert its menus and generally
take over the user interface.

How do we get one of the
IOleInPlaceFrame interfaces? Well,
we go back to the OleCtnrs unit for
this. The interface section of the
unit defines an interface called
IVCLFrameForm which is based on
IOleInPlaceFrame. In the unit’s
implementation section, there is
a function GetVCLFrameForm that

extracts an IVCLFrameForm out of a
given form using the form’s
OleFormObject property. This inter-
face property may be nil, so
GetVCLFrameForm checks and, if so,
assigns a freshly created TOleForm
to it. Since the property is an inter-
face reference, we do not need to
worry about destroying this
object. It will be automatically
destroyed through reference
counting.

So the implementation of
GetInPlaceContext involves using
much the same code as in
GetVCLFrameForm and then filling up
the TOleInPlaceFrameInfo record.

Which now leaves us with
ShowContainerUI. When the OLE
object gets activated, the TOleForm
deals with making sure it fits in
okay. All that needs to be done
here is to cater for the object being
deactivated. Unfortunately the
TOleForm doesn’t spot this
happening and leaves things in a
bit of a state. We need to get rid of
all the OLE merged menus, and
also make sure that we
re-accommodate any space that
was made to fit in the OLE object
application toolbars.

TOleRichEdit = class(TRichEdit)
protected
procedure CreateHandle; override;

end;
TRichEditOleCallback =
class(TInterfacedObject, IRichEditOleCallback)

private
FOwner: TRichEdit;

protected
{ IRichEditOleCallback }
function GetNewStorage: IStorage; safecall;
procedure GetInPlaceContext(out Frame: IOleInPlaceFrame;
out Doc: IOleInPlaceUIWindow; var FrameInfo:
TOleInPlaceFrameInfo); safecall;

procedure ShowContainerUI(fShow: Bool); safecall;
procedure QueryInsertObject(const ClsID: TCLSID; Stg:
IStorage; CP: Longint); safecall;

procedure DeleteObject(OleObj: IOleObject); safecall;
procedure QueryAcceptData(dataobj: IDataObject;
var cfFormat: TClipFormat; reCO: DWord; fReally: Bool;
hMetaPict: HGlobal); safecall;

function ContextSensitiveHelp(fEnterMode: Bool): HResult;
stdcall;

function GetClipboardData(const ChRg: TCharRange; reCO:
DWord; out DataObj: IDataObject): HResult; stdcall;

procedure GetDragDropEffect(fDrag: Bool; grfKeyState:
DWord; var dwEffect: DWord); safecall;

procedure GetContextMenu(SelType: Word; OleObj:
IOleObject; const ChRg: TCharRange; var Menu: HMenu);
safecall;

public
constructor Create(Owner: TRichEdit);
destructor Destroy; override;

end;
{ TRichEditOleCallback }
constructor TRichEditOleCallback.Create(Owner: TRichEdit);
begin
inherited Create;
FOwner := Owner

end;
destructor TRichEditOleCallback.Destroy;
var Form: TCustomForm;
begin
Form := GetParentForm(FOwner);
if Assigned(Form) and Assigned(Form.OleFormObject) then
(Form.OleFormObject as
IOleInPlaceUIWindow).SetActiveObject(nil, nil);

inherited;
end;
function TRichEditOleCallback.ContextSensitiveHelp(
fEnterMode: Bool): HResult;

begin
Result := E_NOTIMPL

end;
procedure TRichEditOleCallback.DeleteObject(OleObj:
IOleObject);

begin
OleObj.Close(OLECLOSE_NOSAVE)

end;
function TRichEditOleCallback.GetClipboardData(
const ChRg: TCharRange; reCO: DWord;
out DataObj: IDataObject): HResult;

begin
Result := E_NOTIMPL

end;
procedure TRichEditOleCallback.GetContextMenu(
SelType: Word; OleObj: IOleObject;
const ChRg: TCharRange; var Menu: HMenu);

begin
Menu := 0

end;
procedure TRichEditOleCallback.GetDragDropEffect(fDrag:
Bool; grfKeyState: DWord; var dwEffect: DWord);

begin
//Use normal effect (stored in dwEffect)

end;
procedure TRichEditOleCallback.GetInPlaceContext(
out Frame: IOleInPlaceFrame; out Doc: IOleInPlaceUIWindow;
var FrameInfo: TOleInPlaceFrameInfo);

var Form: TCustomForm;
begin
//Get richedit's underlying form
Form := ValidParentForm(FOwner);
//Ensure there is a TOleForm object
if Form.OleFormObject = nil then
TOleForm.Create(Form);

//Get relevant frame interface
Frame := Form.OleFormObject as IOleInPlaceFrame;
Doc := nil; //Document window is same as frame window
FrameInfo.hWndFrame := Form.Handle;
FrameInfo.fMDIApp := False;
FrameInfo.hAccel := 0;
FrameInfo.cAccelEntries := 0;

end;
function TRichEditOleCallback.GetNewStorage: IStorage;
var
LockBytes: ILockBytes;

begin
//Basically copied from TOleContainer.CreateStorage
OleCheck(CreateILockBytesOnHGlobal(0, True, LockBytes));
OleCheck(StgCreateDocfileOnILockBytes(LockBytes,
STGM_READWRITE or STGM_SHARE_EXCLUSIVE or STGM_CREATE,
0, Result));

end;
procedure TRichEditOleCallback.QueryAcceptData(dataobj:
IDataObject; var cfFormat: TClipFormat; reCO: DWord;
fReally: Bool; hMetaPict: HGlobal);

begin
//Accept anything

end;
procedure TRichEditOleCallback.QueryInsertObject(const
ClsID: TCLSID; Stg: IStorage; CP: Integer);

begin
//Accept anything

end;
procedure TRichEditOleCallback.ShowContainerUI(fShow: Bool);
var
Form: TCustomForm;

begin
if fShow then begin
Form := GetParentForm(FOwner);
if Assigned(Form) and Assigned(Form.Menu) then begin
//Disassociate OLE menu handle from UI menu
Form.Menu.SetOle2MenuHandle(0);
//Make sure any space that was made for in-place
//toolbars is reclaimed
(Form.OleFormObject as IVCLFrameForm).ClearBorderSpace

end
end

end;
{ TOleRichEdit }
procedure TOleRichEdit.CreateHandle;
begin
inherited;
Perform(em_SetOleCallback, 0,
Longint(TRichEditOleCallback.Create(Self) as
IRichEditOleCallback))

end;

➤ Listing 2



26 The Delphi Magazine Issue 52

Now that all the methods of this
interface have been covered, let’s
see what else Listing 2 shows that
we haven’t looked at. Firstly, you
should see that the unit this code
comes from (OleRichEdit on this
month’s companion disk) imple-
ments a simple component inher-
ited from TRichEdit, called
TOleRichEdit. The only code in the
component itself is in the
CreateHandle method. After the
underlying Windows rich text con-
trol window handle has been cre-
ated, the component sends the
control a message telling it about
the dedicated OLE callback inter-
face that can be used.

Again, because this callback
object is passed across as an inter-
face, it will be automatically
destroyed when the rich edit has
finished with it.

The last thing to say about the
listing is that the TRichEdit-
OleCallback destructor does an
important job. When the callback
object is destroyed, it notifies the
TOleForm object in the underlying
Delphi form that there is no longer
an active OLE object. There is a big
potential problem being avoided
here. If an application developed in
Delphi 3 or 4 is closed whilst you
are editing an active in-place OLE
object in one of these rich edits,
the following sequence of events
occurs. The form destroys the
TRichEdit. The underlying Win-
dows rich text control destroys the
OLE callback object. Shortly after

the TOleForm tries to tidy away the
OLE interfaces of the rich edit,
which have already gone, causing a
rather nasty Access Violation.

This component can be used as a
plug-in replacement for a normal
TRichEdit and, to prove the point,
there is a project on the disk called
RichEdit.Dpr. This is the Delphi 3
sample project that shows the
capabilities of a TRichEdit, but with
two small changes. The TRichEdit
has been replaced with a
TOleRichEdit (don’t forget to install
this component before opening the
project), and a minor amendment
has been made to the main menu.

When OLE objects perform
menu merging, the VCL takes note
of the GroupIndex property of the
top level menus to decide which of
the original menus to leave, and
which ones to hide. Menus with a
GroupIndexof 0, 2 or 4 are left on the

menu bar. I decided to leave the
File menu with a GroupIndex of 0,
but set all the other menus to have
a GroupIndex of 1, to have them
removed from the bar when an
OLE object became active.

Some screenshots will verify
how the rich edit deals with things.
Figure 1 shows the RichEdit
sample project with a simple
sample RTF file open. It has one
bitmap object embedded nor-
mally, and another bitmap object
embedded but displayed as an
icon. The file was made in
WordPad. I’ll leave the business of
adding an Insert Object dialog into
the application as an exercise for
the reader. You can get most of the
source from the OleCtnrs unit.
Check the TOleContainer class’s
InsertObjectDialog method.

Figure 2 shows the application
after double clicking the Athena
image, and Figure 3 shows what
happens when you double click
the iconic image.

In summary, any TRichEdit
object can do more than you may
think. Prudent studying of the
MSDN (and indeed other applica-
tions) can sometimes help identify
what extra facilities may be avail-
able in Windows. In many cases,
these extra facilities are not that
hard to shoe-horn into your appli-
cation. In this particular case, a
new component has a total of just

➤ Figure 1: A TRichEdit with
pictures in (for a change).

➤ Figure 2: In-place editing of
an OLE object in a TRichEdit.



December 1999 The Delphi Magazine 27

➤ Figure 3: Another OLE object in
a TRichEdit being edited.

one overridden method to get support for OLE objects
in rich text controls.

Brian Long is a UK-based freelance consultant and
trainer. He spends most of his time running Delphi
and C++Builder training courses for his clients, and
doing problem-solving work for them. The rest of his
time is filled writing for this very magazine and speak-
ing at the odd conference here and there. You can
reach him at brian@blong.com
Copyright ©1999 Brian Long. All rights reserved.


